
CORSSTOL: Cylinder Optimization of Rings,
Skin, and Stringers With Tolerance Sensitivity

May 1995

NASA Technical Paper 3551

J. Finckenor and M. Bevill

CORSSTOL: Cylinder Optimization of Rings,
Skin, and Stringers With Tolerance Sensitivity

National Aeronautics and Space Administration
Marshall Space Flight Center • MSFC, Alabama 35812

NASA Technical Paper 3551

J. Finckenor and M. Bevill
Marshall Space Flight Center • MSFC, Alabama

May 1995

iii

TABLE OF CONTENTS

Page

INTRODUCTION ... 1

OUTPUT INTERPRETATION ... 1

PROGRAM LOGIC ... 6

CORSSTOL APPLIED .. 9

CONCLUSION .. 11

REFERENCES... 12

APPENDIX A – Sample Input... 13

APPENDIX B – Sample Output File ... 15

APPENDIX C – C Language Source Code ... 19

iv

LIST OF ILLUSTRATIONS

Figure Title Page

 1. Stringer geometry ... 3

 2. Main program routine .. 7

 3. Evaluate with tolerances .. 8

 4. Output tolerance calculations ... 10

LIST OF TABLES

Table Title Page

 1. Problem definition.. 2

 2. Initial optimized solution ... 4

 3. Toleranced optimization solution... 5

 4. GSLOPE array ... 5

 5. Additional tolerance ... 6

 6. New design variable ranges ... 7

 7. Effect of tolerance variation ... 11

TECHNICAL PAPER

CORSSTOL: Cylinder Optimization of Rings, Skin, and Stringers With Tolerance Sensitivity

INTRODUCTION

CORSSTOL builds on the analysis and numerical optimization routines used in CORSS,1

however, CORSS is not required to understand the method that was used to study the tolerance
sensitivities. CORSS is a skin-stringer analysis program tied to a commercially available numerical
optimizer, “Design Optimization Tool” (DOT).2 Either hat or I-stringers can be optimized.
CORSSTOL is capable of working with any set of consistent units (although output currently better
accommodates English units).

Designs provided by CORSS yield precise solutions with constraints close to 0, i.e., they are
very close to being violated. This means that the final design leaves little or no room for error. For
practical purposes, an optimum design should be robust enough to handle a range of dimensions
while keeping the weight of the structure at a value not far from the absolute optimum (i.e., keep the
weight close to the weight CORSS calculated using the optimum dimensions with no tolerances).
CORSSTOL uses this concept to determine an optimum weight and a worst case weight given a set
of tolerances for the design variables. CORSSTOL assumes that the design variables are the mini-
mum material condition and that the design variables with the user input tolerance bands are the
maximum material condition.

The problem statement for the untoleranced optimization is:

Minimize : f(Xi) = weight
Subject to : Gj(Xi) ≤ 0
 and : XLi ≤ Xi ≤ XUi .

The problem statement for the toleranced optimization is:

Minimize : f(Xi+Toli) = weight
Subject to : GWj(XWi,j) ≤ 0
 and : XLi ≤ Xi ≤ XUi ,

where (Xi+Toli) is the maximum material condition. XWi,j is the worst case set of design variables
and tolerances for each constraint. The individual terms of XW are either X or X+Tol, depending on
whether an increase in the design variable increases (makes less conservative) or decreases
(makes more conservative) the given constraint, respectively.

OUTPUT INTERPRETATION

This section deals with the output provided by the CORSSTOL program. The initial output is
a repeat of the user provided input values (table 1). The sample case is a 48-in long cylinder with a
165.5-in radius. The material is aluminum 2219-T87. There are no intermediate rings. The stiffeners
are I-stringers (fig. 1), and elastic buckling of the stringer webs is allowed. Elastic skin buckling is

2

allowed above the given load, as long as all other constraints are satisfied with a 1.4 safety factor
when the skin is buckled. The number of stringers has been set to exactly 300, and the other design
variable are optimized around that.

Table 1. Problem definition.

CORSS - Cylinder Optimization of Rings, Skin and Stringers
 NASA/MSFC/ED52 - Structural Development Branch
 Jeff Finckenor, Sep. 1993, ver. 2.1
 Copyright (c) 1994 National Aeronautics and
 Space Administration. No copyright claimed in
 USA under Title 17, U.S. Code. All other rights
 reserved.

CORSSTOL Sample Case

************************ INPUT VALUES *****************
FLAGS
 IPRINT = 0 No screen output by DOT
 METHOD = 0 Modified method of feasible directions
 SSP = 0 Final CORSS output only

Material Properties
 nu = 0.330 Poisson’s ratio
 E = 1.080E+007 Young’s modulus
 SM = 4.000E+006 Shear modulus
 rho = 0.111 Density
 Stu = 63000.0 Ultimate tensile stress
 Scy = 53000.0 Yield compressive stress

Cylinder Geometry
 r = 165.50 Radius
 l = 48.00 Length
 fwt = 0.00 Additional weight

Stringer Parameters
 stype = I I stringers
 Local elastic buckling IS ALLOWED
 increase m from 1 while coupled buckling stress decreases
 alp = 0.000 Web angle
 l1 = 0.000 Bottom flange thickness
 MZs = 1 Stringers external

Ring Parameters
 No Rings

Loads
 F = 410481.9 Axial compression
 M = 9.152E+007 Bending moment
 V = 98372.0 Shear force
 Pa = 0.000 Axial pressure component
 Ph = -0.087 Hoop pressure component
 sf = 1.40 Safety factor
 sfp = 1.00 Plate buckling safety factor

Design Variables
Var. Minimum Initial Maximum Name
h 0.5000 1.5000 8.3750 Stringer height
l2 0.0400 0.0500 0.4075 Top flange thickness
t s t 0.0400 0.0500 0.4075 Web thickness
Nst 300.0 300.0 300.0 Number of stringers
t 0.0400 0.0500 0.4075 Skin thickness
W 0.5000 2.5000 8.3750 Stringer width

3

W

h tst

t

Nst stringers around circumference

l2

Figure 1. Stringer geometry.

CORSSTOL iterates through calls to DOT and the analysis until an optimized solution, with-
out tolerances, is reached (table 2). This design case took four DOT iterations to optimize. Each
DOT iteration involves multiple analysis calls to numerically calculate the function gradients and
jump to a new design point. The optimized weight, without tolerance considerations, is given, along
with the final design variable values. The stringer properties and required end ring properties are
provided. The design constraints with their values are given. The convention is for a satisfied con-
straint to be negative.

The skin buckling constraint is a sum of stress ratios that must be less than 1. In this case,
skin buckling is a driving constraint since the constraint value, G, is only slightly negative. The value
for G is the sum of ratios minus 1. Coupled buckling stress is a failure mode in which the top flange of
the I-stringer rolls in relation to the skin. This and the remaining constraints are calculated by:
(critical stress)/(allowable stress) – 1. Stringer crippling stress is a material failure at the corners of
the stringer due to the uneven stress distribution along the stringer cross section. Column stress is
the Euler column buckling value of the stringer, taking into account any helpful effective skin. The
stress constraint compares the material allowable with the distributed stress on the cylinder as a
function of axial force and bending moment. Critical column buckling and general cylinder buckling are
related. The general cylinder buckling analysis smears the stringers into an equivalent orthotropic
shell and calculates the critical shell buckling load. If the skin buckles, this is not valid and is not
used. If the skin does not buckle, then the more favorable of the stringer column buckling and the
general cylinder buckling is used. This reflects the ability of the stringers to carry load without skin in
some cases, and for the skin to transfer load between stringers in other cases.

After the initial optimization of the cylinder, the toleranced optimization begins. The toler-
anced optimization routine could be used from the initial values, but it is best to start from a near-
optimum solution to reduce the program run time. During the initial optimization, it takes one skin
stringer analysis to provide constraint values for a given set of design variables. For the tolerance
optimization, it can take up to seven analyses for one set of constraints. An initial optimum analysis
is required, plus an analysis for the perturbation of each of six design variables.

4

Table 2. Initial optimized solution.

Number of Iterations to Optimize = 4
CORSSTOL Sample Case

Cylinder Weight = 595.5
 (Skin: 353.8, Stringers: 241.7, Rings: 0.0, Flanges: 0.0)

h = 1.4064, Stringer height
l2 = 0.0400, I top flange thickness
t s t = 0.0400, I stringer web thickness
Nst = 300.0, Number of stringers, b = 3.4662
t = 0.0639, Skin thickness
W = 2.4138, I stringer width

Stringer: I = 0.025774, J = 0.000081, Z = 1.164139, A = 0.151207
End ring I should be at least 10.8982
End ring area should be at least 0.000439295*(r+Z)
 G[] value
Skin: (shear ratio)**2 + Stress ratio = 0.99470 < 1 –0.00530

Applied column stress (SF = 1.40) = 19,343.3
 Critical coupled buckling stress (m = 1) = 19,447.4 –0.00535
 Critical stringer crippling stress = 63,000.0 –0.69296
 Critical column stress = 19,450.6 –0.00552

Applied Von Mises stress (SF = 1.40) = 19,187.4
 Yield compressive stress = 53000.0 –0.63797

General cylinder buckling controlled by critical column buckling

The toleranced solution output (table 3) starts with a repetition of the user input tolerance
ranges. Then output is the weight of the cylinder at the minimum material condition (optimum), the
maximum material condition (maximum), and the difference (delta).

The design variables are listed with the optimum value, the maximum value (OPT+TOL
column), the weight sensitivity to that variable(dWt/dDV), and the weight penalty (dWt) of the given
tolerance. The maximum value is only the optimum value with the input tolerance added. The weight
penalty is the weight of a cylinder with that design variable at its maximum and all the others at their
minimum. The weight sensitivity is dWt divided by the input tolerance. For the sample case all
tolerances were set at 0.01 in. In instances where a tolerance is given as 0, a 1-percent variation is
used for the dWt/dDV calculation, and elsewhere in the program where a variation is needed.

All the optimization design values are length dimensions except the number of stringers. To
be consistent with the length dimensions, the stringer spacing, b, was toleranced in the analysis
instead of the number of stringers, Nst. Stringer spacing is the distance along the skin between the
same point on adjacent stringers. The equation b = (2πr)/Nst is used extensively throughout the
code to relate the variables. Perturbations in b cause floating point variations in the number of
stringers. However, DOT is a gradient optimizer, and Nst is handled as a floating point instead of an
integer.

The GSLOPE array (table 4) provides the sensitivities of each constraint to each design
variable. The minimum design variables are analyzed to create an INITG vector. Then each design
variable is sequentially perturbed by its tolerance to give a new G vector. GSLOPE is equal to the
difference between INITG and G, divided by the tolerance.

5

Table 3. Toleranced optimization solution.

---Tolerance Sensitivity Output for CORSS---

Design Variable Tolerances
 htol = 0.0100 Stringer height tolerance
 l2tol = 0.0100 Top flange thickness tolerance
 tsttol = 0.0100 Stringer web thickness tolerance
 Nsttol = 0.0100 Stringer spacing tolerance
 ttol = 0.0100 Skin thickness tolerance
 Wtol = 0.0100 Top flange width tolerance

NEW OPTIMUM ANALYSIS

SENSITIVITY ANALYSIS RESULTS

 Optimum Maximum Delta
Cylinder Weight 594.70 711.99 117.30

Design Variable Solutions
 DV Optimum OPT+TOL dWt/dDV dWt
 h = 1.40639 1.41639 63.7512 0.6375
 l2 = 0.04000 0.05000 3,783.3191 37.8332
 tst = 0.04000 0.05000 2,177.7588 21.7776
 (b = 3.47622 3.46622)
 Nst = 299.13699 300.00000 0.8056 0.6953
 t = 0.06385 0.07385 5,538.1045 55.3810
 W = 2.41377 2.42377 63.7512 0.6375

Number of Stringers, Nst = 2*pi*r/b, b = stringer spacing

Small changes in b change the theoretical number of stringers used in the analysis. As
stringer spacing increases, the number of stringers decreases. The design will have an integer
number of stringers, but the effect of the spacing tolerance is shown here. Any differences
between the sum of the dWt values and deltaWt are due to the weight function not being
linear. All calculations are based on taking differences about the optimum.

Table 4. GSLOPE array.

GSLOPE ARRAY
DV dSkB/dDV dShB/dDV dStr/dDV dCrp/dDV dICB/dDV
h –0.1104 –1.4281 –0.0463 –0.0390 0.0099
l2 –6.4130 –11.8218 –2.6923 –2.2653 –10.6503
tst –3.6700 –1.4574 –1.5418 –1.2971 –2.4030
b 0.6387 0.1288 0.0507 0.0426 0.1378
t –39.6311 –9.0021 –4.8850 –4.1480 –13.4095
W –0.1080 –0.2092 –0.0453 –0.0381 –0.9595

G[i] –0.00008* –0.00046* –0.63296 –0.68795 –0.00518*

* Denotes the driving constraints, which must be negative to be satisfied
GSLOPE = [G(1.01*DV)-G(DV)]/(1.01*DV-DV)
negative values of d()/dDV indicate a safer design for an increase in DV
DV = design variable G[i] = constraint value
SkB = skin buckling ShB = shell buckling
Str = stress Crp = stringer crippling
ICB = 'I'-stringer coupled buckling

A negative value in GSLOPE indicates the design gets safer as the variable is increased.
This is because constraints must be less than 0 to be satisfied.

6

The signs of the GSLOPE values are used to determine the worst-case condition for each
individual constraint. Design variables with a negative GSLOPE are used at the given value, vari-
ables with a positive slope have their tolerance added. The I-stringer coupled buckling constraint
(dICB/dDV) has negative GSLOPE values for l2, tst, t, and W and positive values for h and b. The
constraint value used in the optimization is calculated using the given values of l2, tst, t, and W and
values with the tolerances added for h and b.

The additional tolerance array (table 5) checks to see if there is a safe area outside the
specified range. This information feeds directly into the NEW RANGES information that follows.

The DOT optimizer finds solutions with one or more constraints near, but not exactly zero. A
linear approximation is used to find the value of the design variable at which the related constraint is
exactly equal to zero. Negative numbers have no physical meaning, other than that the dimension
under consideration has no significant effect on that constraint. Also, constraints that are not driving
the design will tend to have negative additional tolerance values since they are starting at a rela-
tively large negative number.

Table 5. Additional tolerance.

ADDITIONAL TOLERANCE ARRAY
DV SkB ShB Str Crp ICB
h 1.4057 1.4061 –12.2652 –16.2549 1.9418
l2 0.0400 0.0400 –0.1951 –0.2637 0.0395
tst 0.0400 0.0397 –0.3705 –0.4904 0.0378
b 3.4764 3.4798 15.9694 19.6152 3.5138
t 0.0639 0.0638 –0.0657 –0.1020 0.0635
W 2.4130 2.4116 –11.5513 –15.6270 2.4084

The ADDTOL array contains the values of the design variables at which the constraint is
equal to 0, assuming linear relationships.
ADDTOL = DV – G(DV)/GSLOPE
Negative values should be disregarded, since they indicate the design variable can be brought
past zero without violating that particular constraint.

New ranges (table 6) use the additional tolerance array to see if there is any benefit that can
be gained for the design. For the sample case the optimum calculated value of h is 1.40639. Because
of numerical limitations on making the constraints exactly equal to zero, this can be reduced slightly
to 1.40607. However, h could be allowed to increase to 1.94183 without any constraints being vio-
lated, and only costing a maximum of 33.5 lb. While over 0.5 in is an excessively large tolerance for a
1.5-in stringer, the designer is now aware that this tolerance can easily be made very loose. It is
important to note that the new tolerance band is calculated with a linear approximation. If a wider
tolerance is desired, it is important to rerun the optimization with the larger tolerance band as input.
Since the constraints are calculated at the bounds of the given tolerance, the design will always have
a positive margin of safety for the given tolerance range.

PROGRAM LOGIC

Note that all of the sensitivities calculated by CORSSTOL are based on individual design
variables. There is no consideration of interaction among the design variables. This assumption
should be acceptable as long as variations are small.

Additional code shown in appendix A but not included in the following flow diagrams is to
avoid repetition of an analysis, to normalize the variables, or to prevent divide by 0 errors.

7

Table 6. New design variable ranges.

NEW RANGES for the Design Variables (from the Additional Tolerance array)

 Below Optimum ---- Above Maximum ----
Lower Weight Added Upper Weight Added New Tol.

DV Limit Savings Toler. Limit Penalty Toler. Band
h 1.40607 0.0206 0.00032 1.94183 33.5 0.52544 0.53576
l2 0.03999 0.0478 0.00001 No constraint limits the upper bound
t s t 0.03998 0.0481 0.00002 No constraint limits the upper bound
Nst 299.12608 0.0088 No constraint limits the upper bound
(b No limit on the lower bound 3.47635 0.00013 3.47635)
t 0.06385 0.0113 0.00000 No constraint limits the upper bound
W 2.41302 0.0479 0.00075 No constraint limits the upper bound

The only penalty for increasing design variables with no upper limit is an
increase in weight. Note that an unsatisfied constraint (G[i]>0) will
cause unrealistic results. For a feasible solution, no constraints will be
violated as long as the DVs are held within the limits specified in this
chart when ASSUMING LINEAR RELATIONSHIPS.

Figure 2 shows the operation of the main routine of the program. After the parameters for
DOT and the program are assigned, the initial evaluation is performed with the user input initial
design variables, X[i]. The constraint array, G[i], and the weight are calculated. The evaluation is
looped with DOT which controls the numerical calculation of gradients and jumps to new points in
the design space.

Set up DOT/Program
parameters

Evaltol: G[j], Wt = f(X[i])

Tolout

CTfinalout

Y

N

DOT

Optimized?

Figure 2. Main program routine.

DOT is a gradient optimizer that incorporates the gradients of the constraints so that it fol-
lows the constraint boundaries to an optimum point. A more thorough description of DOT can be
found in references 1 and 3.

8

Once the optimum has been found and the loop exited, the sensitivities of interest to the user
are calculated in “Tolout” and printed to an output file by “CTfinalout”.

Figure 3 shows the method used in “Evaltol” to evaluate the constraints, G [i] and the
weight, OBJ. The design variables that DOT operates on are copied into vectors that will change
during the evaluation. The initX array is used as a reference point, while XW is adjusted to provide a
worst-case set of design variables. The initial constraint array, initG[j], is calculated using initX.

Weight = f(initX[i] + Tol[i])

Evaltol

XW[i] = initX[i] = X[i];

Eval: initG[j] = f(initX[i])

Calculate Gslope

for (i=0; i<NDV; i++)
{
 XW[i] *= 1.01;
 Eval: G[j] = f(XW[i])
 for (j=0; j<NCON; n++)
 Gslope[j][i] = (G[j]-initG[j])/(XW[i]-initX[i]);
 XW[i] = initX[i];
}

Calculate GW

for (j=0; j<NCON; j++)
{
 for (i=0; i<NDV; i++)
 if (Gslope[j][i]<=0) XW[i] = initX[i];
 else XW[i] = initX[i] + Tol[i];
 Eval: GW[j] = f(XW[i])
}

Figure 3: Evaluate with Tolerances
Figure 3. Evaluate with tolerances.

The GSLOPE array is calculated by sequentially perturbing each design variable and evaluat-
ing the constraints. The changes are referenced back to the initG and initX vectors to provide a linear
approximation of the slopes at that point.

9

GW is the worst-case set of constraints and is the only constraint vector that DOT sees. In
order for a constraint to be satisfied, it must be negative. If GSLOPE for a given constraint and
design variable is negative that means increasing the variable makes the design more conservative.
Positive values for GSLOPE indicate that the design is less conservative as the design variable
increases. Based on the sign of GSLOPE, the XW vector is filled either with the minimum value
allowed or the minimum plus the given tolerance (the maximum). Since increases in design variables
may improve some constraints while decreasing others, each constraint value is evaluated for its
own worst case set of design variables.

Finally the maximum material condition weight is calculated to act as the objective function.

Figure 4 shows how “Tolout” calculates the sensitivities of interest to the user. The DOT
design variables, X, are copied into a working vector, XW. The optimum (minimum material condi-
tion) and maximum (maximum material condition) weights are calculated. Then a working vector of
tolerances, TW, is set to 0.

The weight is calculated as the tolerances are sequentially set to their user input value. From
that the weight difference due to each variable and a linear approximation of the slope of the weight
are calculated.

The final constraint values are never exactly equal to zero, and noncritical constraints may be
much less than zero. The AddTol array contains the design variable values at which the constraint is
zero. Note that this assumes a linear variation, which will generally only be accurate if the constraint
is near zero. Other values should be used as an indicator, but not considered a precise value.

New tolerance bounds are calculated using the AddTol array. The AddTol values for a given
design variable are directly compared to find the minimum and maximum.

CORSSTOL APPLIED

The benefits of CORSSTOL can be seen in table 7. The optimum design variables for each set
of tolerances are shown. The tolerances used were 0.030 applied to each variable, 0.010 to each
variable, a varying tolerance, and a zero tolerance. The design variable values shown are the opti-
mum (except b, which was fixed), to which the tolerances are added. The column with the varying
tolerance shows the optimum variable plus the tolerance band for that variable.

If the tolerances of a given cylinder are assumed to be normally distributed over the whole
surface, then the average of the minimum and maximum weights is the expected weight. The
“Increase” row is the percent increase of the average cylinder weight over the zero tolerance
weight.

The overall 0.030 tolerance increases the weight of the cylinder 29 percent above the opti-
mum, which is unacceptable for a light weight structure. Reducing the overall tolerance to 0.010
reduces the weight increase to 9.6 percent. By using the information provided by the 0.030 and 0.010
runs, the tolerances can be chosen so the weight increase is only 4 percent.

The weight sensitivity of stringer spacing, b, is very low and it has a very small impact on
weight. The stringer height, h, and width, W, have slightly higher weight sensitivities, but the overall
effect on weight is still small. Since the effect on the weight from these dimensions is small, they can
be given a fairly loose 0.060 (or ±0.030) tolerance.

10

Design Variable Minimum/Maximum

for(i=0; I<NDV; i++)
{
 newDVs = 0; newDVl=9999;
 for (j=0; j<NCON; j++)
 {
 if ((AddTol[j][i]<XW[i]) && (AddTol[j][i]>newDVs))
 newDVs = AddTol[j][i];
 if ((AddTol[j][i]>XW[i]+Tol[i]) && (AddTol[j][i]<newDVl))
 newDVl = AddTol[j][i];
 }
 DVmin[i] = newDVs; DVmax[i]=newDVl;
}

Additional Tolerance

for (i=0; i<NDV; i++)
 for(j=0; j<NCON; j++)
 {
 AddTol[j][i] = XW[i] - GW[j]/Gslope[j][i];
 if (Gslope[j][i]>0) AddTol[j][i] += Tol[j];
 }

Weight Sensitivity

for(i=0; i<NDV; i++)
{
 TW[i] = Tol[i];
 OBJH = f(XW[i] + TW[i])
 delWT[i] = OBJH - optWT;
 Wslope[i] = delWT[i]/TW[i];
 TW[i] = 0;
}

maxWT = f(XW[i] + Tol[i])

Tolout

XW[i] = X[i]

optWT = f(XW[i])

TW [i] = 0

Figure 4. Output tolerance calculations.

11

The stringer thicknesses, l2 and tst, have a much greater weight sensitivity and impact on the
overall weight. If the assumption is that the stringers are integrally milled out of a plate, it may not
be possible to get very tight tolerances. However it is still necessary to keep them tight because of
the weight. A compromise tolerance of 0.005 was chosen, although the actual value would be depen-
dent on the capability of the available shop equipment.

Skin thickness, t, has the highest weight sensitivity and impact, so it is most important to
keep its tolerance as tight as possible. With the assumption of an integrally milled plate, the skin
thickness would be easier to control than the stringer thicknesses because the skin cannot get
pushed away by the milling head. A tolerance of 0.002 (±0.001) was chosen. Again, this would be
dependent on the capability of the equipment.

Table 7. Effect of tolerance variation.

Tol[i]=.030 Tol[i]=.010 Tol[i] varies Tol[i]=0.000
h 1.4078 1.4064 1.4120 + 0.060 1.4050
l2 0.0400 0.0400 0.0400 + 0.005 0.0400
tst 0.0400 0.0400 0.0400 + 0.005 0.0400
b 3.4662 3.4662 3.4662 + 0.060 3.4662
t 0.0642 0.0639 0.0647 + 0.002 0.0640
W 2.4093 2.4138 2.4130 + 0.060 2.4119
Min Weight 594.78 594.70 596.04 596.10
Max Weight 947.47 711.99 644.20
Avg Weight 771.13 653.35 620.12
Increase 29.39% 9.60% 4.03%

Use of CORSSTOL in this case has produced a design for a stringer-stiffened cylinder. Toler-
ances have been intelligently assigned so that noncritical areas have a very large range, and only the
most critical dimensions have tight tolerances. Manufacturing costs can be concentrated on the criti-
cal dimensions to provide a good part for less cost.

CONCLUSION

CORSSTOL demonstrates a method that allows users to determine the sensitivity of their
designs to dimensional tolerances. While the method does not provide values for the tolerances of
the design variables, it does show the effects of user input tolerances. This method allows for toler-
ances to be assigned in a more analytic and functional manner, and gives insight to the designer for
deciding if a part made out of tolerance is still safe.

12

REFERENCES

1. Finckenor, J., Rogers, P., and Otte, N.: “CORSS: Cylinder Optimization of Rings, Skin, and
Stringers.” NASA Technical Paper 3457, January 1994.

2.. Vanderplaats, G., and Hansen, S.: “Design Optimization Tool.” VMA Engineering, 1985–1988.

3. Vanderplaats, G.N.: “Numerical Optimization Techniques for Engineering Design: With
Applications.” McGraw-Hill Book Company, 1984.

13

APPENDIX A

Sample Input

CORSSTol Sample
0 Screen output by DOT 0=none 7=most,IPRINT
0 METHOD 0,2=Mod.Meth.of Feas.Dirs.,2=Seq.Lin.Prog
0 Output, 0=final,1=final calcs.+0,2=dv/con+0,3=dv/con+1
.33 Poisson's Ratio
10.8e6 Young's Modulus, compressive
4.E6 Shear Modulus
.111 density
63000 Ultimate Tensile Strength, enter as positive
53000 Compressive Yield Strength, enter as positive
165.5 radius of cylinder
48 length of cylinder
0.0 extra nonoptimized weight
I stringer type, 'H' for hat stringers, 'I' for I-stringers
Y Allow Local Elastic Buckling [Y/N]
0 I-str coupled buckling flag, 0=find bucket, #=search m=1 to #
0. web angle in degrees, 0 is perpendicular to skin
0. hat to skin length (2/hat), or height of I bottom flange
1 1 for external stringers, -1 for internal
1.50 ring cross sectional area
63.0 ring Moment Of Inertia
-1.0 ring centroid location
58.0 ring Polar Moment Of Inertia
0 number of intermediate rings
410481.9 Applied Axial Force, positive is compressive
91520000 Applied Bending Moment, enter as positive
98372 Applied Shear Force, enter as positive
0.00 Axial Pressure (i.e. tank ullage) +internal
-.087 Hoop Pressure (i.e. ullage+head) +internal
1.4 overall safety factor
1.0 skin buckling safety factor
.5 h min, stringer height
1.5 h init
8.375 h max
0.01 h Tolerance
.04 l2 min, hat: top flange length, I: top flange thickness
.05 l2 init
.4075 l2 max
0.01 l2 Tolerance
0.04 tst min, hat: stringer thickness, I: web thickness
0.05 tst init
0.4075 tst max
0.01 tst Tolerance
300 Nst min, number of stringers
300 Nst init
300 Nst max
0.01 Nst Tolerance
0.04 t min, skin thickness
0.05 t init
0.4075 t max
0.01 t Tolerance
0.5 W min, hat: top flange thickness, I: width
2.5 W init, hat: set min,init and max to 0 for
8.375 W max, hats of constant tst
0.01 W Tolerance

14

15

APPENDIX B

Sample Output File

CORSS - Cylinder Optimization of Rings, Skin and Stringers
 NASA/MSFC/ED52 - Structural Development Branch
 Jeff Finckenor, Sep. 1993, ver. 2.1
 Copyright (c) 1994 National Aeronautics and
 Space Administration. No copyright claimed in
 USA under Title 17, U.S. Code. All other rights
 reserved.

CORSSTol Sample

************************ INPUT VALUES *****************
FLAGS
 IPRINT = 0 No screen output by DOT
 METHOD = 0 Modified Method of Feasible Directions
 SSP = 0 Final CORSS output only

Material Properties
 nu = 0.330 Poisson's Ratio
 E = 1.080E+007 Young's Modulus
 SM = 4.000E+006 Shear Modulus
 rho = 0.111 Density
 Stu = 63000.0 Ultimate Tensile Stress
 Scy = 53000.0 Yield Compressive Stress

Cylinder Geometry
 r = 165.50 Radius
 l = 48.00 Length
 fwt = 0.00 Additional Weight

Stringer Parameters
 stype = I I Stringers
 Local Elastic Buckling IS ALLOWED
 increase m from 1 while coupled buckling stress decreases
 alp = 0.000 Web Angle
 l1 = 0.000 bottom flange thickness
 MZs = 1 Stringers external

Ring Parameters
 No Rings

Loads
 F = 410481.9 Axial Compression
 M = 9.152E+007 Bending Moment
 V = 98372.0 Shear force
 Pa = 0.000 Axial pressure component
 Ph = -0.087 Hoop pressure component
 sf = 1.40 Safety factor
 sfp = 1.00 Plate buckling safety factor

Design Variables
Var. Minimum Initial Maximum Name
h 0.5000 1.5000 8.3750 Stringer height
l2 0.0400 0.0500 0.4075 Top flange thickness
tst 0.0400 0.0500 0.4075 Web thickness
Nst 300.0 300.0 300.0 Number of stringers
t 0.0400 0.0500 0.4075 Skin thickness
W 0.5000 2.5000 8.3750 Stringer Width

16

Number of Iterations to Optimize = 4
CORSS using SGA optimizer

Cylinder Weight = 595.5
 (Skin: 353.8, Stringers: 241.7, Rings: 0.0, Flanges: 0.0)

h = 1.4064, Stringer Height
l2 = 0.0400, I top flange thickness
tst = 0.0400, I stringer web thickness
Nst = 300.0, Number of Stringers, b = 3.4662
t = 0.0639, Skin Thickness
W = 2.4138, I stringer width

Stringer: I = 0.025774, J = 0.000081, Z = 1.164139, A = 0.151207
End Ring I should be at least 10.8982
End Ring Area should be at least 0.000439295*(r+Z)

 G[] value
Skin: (Shear ratio)**2 + Stress ratio = 0.99470 < 1 -0.00530

Applied Column Stress (SF = 1.40) = 19343.3
 Critical Coupled Buckling Stress (m = 1) = 19447.4 -0.00535
 Critical Stringer Crippling Stress = 63000.0 -0.69296
 Critical Column Stress = 19450.6 -0.00552

Applied Von Mises Stress (SF = 1.40) = 19187.4
 Yield Compressive Stress = 53000.0 -0.63797

General Cylinder Buckling controlled by Critical Column Buckling

---Tolerance Sensitivity Output for CORSS---

Design Variable Tolerances
 htol = 0.0100 Stringer Height Tolerance
 l2tol = 0.0100 Top Flange Thickness Tolerance
 tsttol = 0.0100 Stringer Web Thickness Tolerance
 Nsttol = 0.0100 Stringer Spacing Tolerance
 ttol = 0.0100 Skin Thickness Tolerance
 Wtol = 0.0100 Top Flange Width Tolerance

NEW OPTIMUM ANALYSIS

SENSITIVITY ANALYSIS RESULTS

Optimum Maximum Delta
Cylinder Weight 594.70 711.99 117.30

Design Variable Solutions
 DV Optimum OPT+TOL dWt/dDV dWt
 h = 1.40639 1.41639 63.7512 0.6375
 l2 = 0.04000 0.05000 3783.3191 37.8332
 tst = 0.04000 0.05000 2177.7588 21.7776
 (b = 3.47622 3.46622)
 Nst = 299.13699 300.00000 0.8056 0.6953
 t = 0.06385 0.07385 5538.1045 55.3810
 W = 2.41377 2.42377 63.7512 0.6375

17

Number of Stringers, Nst = 2*pi*r/b, b = stringer spacing

Small changes in b change the theoretical number of stringers used in
the analysis. As stringer spacing increases, the number of stringers
decreases. The design will have an integer number of stringers, but
the effect of the spacing tolerance is shown here. Any differences
between the sum of the dWt values and deltaWt are due to the weight
function not being linear. All calculations are based on taking
differences about the optimum.

GSLOPE ARRAY
DV dSkB/dDV dShB/dDV dStr/dDV dCrp/dDV dICB/dDV
h -0.1104 -1.4281 -0.0463 -0.0390 0.0099
l2 -6.4130 -11.8218 -2.6923 -2.2653 -10.6503
tst -3.6700 -1.4574 -1.5418 -1.2971 -2.4030
b 0.6387 0.1288 0.0507 0.0426 0.1378
t -39.6311 -9.0021 -4.8850 -4.1480 -13.4095
W -0.1080 -0.2092 -0.0453 -0.0381 -0.9595

G[i] -0.00008* -0.00046* -0.63296 -0.68795 -0.00518*

* Denotes the Driving Constraints, which must be negative to be satisfied
GSLOPE = [G(1.01*DV)-G(DV)]/(1.01*DV-DV)
negative values of d()/dDV indicate a safer design for an increase in DV
DV = Design Variable G[i] = Constraint Value
SkB = Skin Buckling ShB = Shell Buckling
Str = Stress Crp = Stringer Crippling
ICB = 'I'-stringer Coupled Buckling

ADDITIONAL TOLERANCE ARRAY
DV SkB ShB Str Crp ICB
h 1.4057 1.4061 -12.2652 -16.2549 1.9418
l2 0.0400 0.0400 -0.1951 -0.2637 0.0395
tst 0.0400 0.0397 -0.3705 -0.4904 0.0378
b 3.4764 3.4798 15.9694 19.6152 3.5138
t 0.0639 0.0638 -0.0657 -0.1020 0.0635
W 2.4130 2.4116 -11.5513 -15.6270 2.4084

The ADDTOL array contains the values of the design variables
at which the constraint is equal to 0, assuming linear relationships.
ADDTOL = DV - G(DV)/GSLOPE
Negative values should be disregarded, since they indicate the design
variable can be brought past zero without violating that particular
constraint.

NEW RANGES for the Design Variables (from the Additonal Tolerance array)

 Below Optimum ---- Above Maximum ----
 Lower Weight Added Upper Weight Added New Tol.
DV Limit Savings Toler. Limit Penalty Toler. Band
h 1.40607 0.0206 0.00032 1.94183 33.5 0.52544 0.53576
l2 0.03999 0.0478 0.00001 No constraint limits the upper bound
tst 0.03998 0.0481 0.00002 No constraint limits the upper bound
Nst 299.12608 0.0088 No constraint limits the upper bound
(b No limit on the lower bound 3.47635 0.00013 3.47635)
t 0.06385 0.0113 0.00000 No constraint limits the upper bound
W 2.41302 0.0479 0.00075 No constraint limits the upper bound

The only penalty for increasing design variables with no upper limit is an

18

increase in weight. Note that an unsatisfied constraint (G[i]>0) will
cause unrealistic results. For a feasible solution, no constraints will be
violated as long as the DVs are held within the limits specified in this
chart when ASSUMING LINEAR RELATIONSHIPS.

19

APPENDIX C

C Language Source Code

FROM Include File CORSS.H
Analysis Code refered to but not shown here is included in NASA TP-3457

/* C language include files for standard function definitions */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

/* define pi for use in the program */
#define pi 3.141592654

/* Variable Structures
Many often passed values are grouped into structures of related variables
stiffness - the smeared orthotropic cylinder properties used in General

Cylinder Buckling Calculations
Ex, Ey, Exy - smeared extensional stiffnesses
Gxy - smeared shear stiffness
Cx, Cy, Cxy, Kxy - smeared coupling constants
Dx, Dy, Dxy - smeared bending stiffnesses

material - the material properties from the input file
E - Young's Modulus
nu - poisson's ratio
rho - density
Scy - compressive yield strength
G - Shear Modulus
Stu - tensile ultimate strength

load - the loading parameters from the input file
F - axial force, positive is compressive
M - bending moment
Pa - axial pressure (i.e. ullage), internal is positive
Ph - hoop pressure (i.e. ullage+head), internal is positive
sf - safety factor to be applied to loads
sfp - skin buckling safety factor, assumed 1.0<=sfp<=sf
V - shear force

stringer - the variables that define the stringers
A - cross sectional area
I - Moment of Inertia about the neutral axis parallel to the skin
J - The polar moment of inertia, Ix+Iy
N - the number of stringers (optimized design variable)
Z - neutral axis distance from the skin
alp - web angle
l1 - hats: stringer to skin length, 2/hat; I: bottom flange thickness
MZs - Z multiplier, 1 for external stringers, -1 for internal
h - stringer height (optimized design variable)
l2 - hat: top flange width, I: top flange thickness (design variable)
t - skin thickness (optimized design variable)
W - hat: top flange thickness, I: stringer width (design variable)
b - stringer spacing
la - projected length of the hat stringer web on the skin
stype - stringer type identifier, H for hats, I for I's

ring - ring parameters from the input file
A - cross sectional area
I - moment of inertia about the neutral axis parallel to the skin
J - Polar Moment of Inertia, Ix+Iy
N - number of intermediate rings (not end rings)
Z - neutral axis distance from the skin, + for external
d - ring spacing

cylinder - cylinder geometry definitions
fwt - additional weight, not optimized
l - length of cylinder

20

r - radius of cylinder
t - skin thickness (optimized design variable)

**/
struct stiffness{float Ex, Ey, Exy, Gxy, Dx, Dy, Dxy, Cx, Cy, Cxy, Kxy; };
struct material {float E, nu, rho, Scy, G, Stu; };
struct load {float F, M, Pa, Ph, sf, sfp, V; };
struct stringer {float A, I, J, N, Z, alp, l1, MZs, h, l2, t, W, b, la;

 char stype;};
struct ring {float A, I, J, N, Z, d; };
struct cylinder {float fwt, l, r, t; };

/***/
/************************* file CT.C *******************************/
/***/

/* MAIN starts the program, initialized the variables and calls the
optimization routine

called from: DOS command line
calls : readinput, pinput, initDVs, CALLeval, and corsstol
returns :
 argc, argv - the number and array of command line parameters,
 G - array of constraint values,
 hap - position of stringer height in X
 i - index,
 in, out - handles for the input and output files,
 IPRINT - DOT output flag,
 l2ap - position of top flange length in X
 LEB - Y/N flag to allow local elastic buckling of the stringer segments
 METHOD - DOT method flag,
 mflag - flag to control search of I-coupled buckling
 NCON - number of constraints,
 NDV - number of design variables,
 Nstap - position of number of stringers in X
 OBJ - weight,
 SSP - CORSS output flag
 tap - position of skin thickness in X
 Title - title of run,
 Tol - array of tolerances associated with X
 tstap - position of stringer thickness in X
 Wap - position of I width: H top flange thickness in X
 X, XL, XU - array of design variables, and lower and upper limits,
 Xinit - array of initial variables for normalizing,
**/

/* comlineerr is called if there is an error with the command line. It
prints the correct usage message and exits the program

called from: MAIN
calls :
returns :
**/
void comlineerr();

/* initDVs controls the removal of variables from the design variable arrays
called from: MAIN
calls : Xadust
returns : modified X,XL,XU,Xinit arrays, and hap,l2ap,tstap,Nstap,tap,Wap

indices and the new number of design variables
i - incrementing index
NDV - number of design variables
pos - current X array position

**/
long int initDVs(float XL[], float X[], float XU[], int *hap, int *l2ap,

int *tstap, int *Nstap, int *tap, int *Wap, float Xinit[],

21

long int ndv);

/* Xadjust manipulates the design variable arrays so that only the needed
design variables are iterated upon

called from: initDVs
calls :
returns : next available design variable array position

k - index
**/
int Xadjust(int newpos, int pos, long int *NDV, float X[], float Xinit[],

 float XL[], float XU[]);

/***/
/************************* file CTOPT.C ****************************/
/***/

/* DOT is the numerical optimizer program
called from: ctopt
returns : new values for X
**/
void fortran DOT(long int *INFO, long int *METHOD, long int *IPRINT,

 long int *NDV, long int *NCON, float X[],
 float XL[], float XU[], float *OBJ,
 long int *MINMAX, float G[], float RPRM[],
 long int IPRM[], float WK[], long int *NRWK,
 long int IWK[], long int *NRIWK);

/* CALLeval uses the X array and the 'ap' variable to prepare the variables
for the analysis of EVAL

calls : eval
returns :
**/
void CALLeval(struct stringer S, struct ring R, struct material M,

struct load L, struct cylinder C, float G[], float X[],
float Xinit[], float *OBJ, FILE *out, int SSP, int hap, int l2ap,
int Nstap, int tap, int tstap, int Wap, int mflag, char LEB);

/* ctopt controls the optimization calls to eval and DOT
called from: MAIN
calls : CALLeval and DOT
returns :

INFO - DOT completion flag
IPRM, IWK, RPRM, WK - DOT working arrays
MINMAX - DOT minimization/maximization flag
NRIWK, NRWK - IWK and WK sizes

**/
void ctopt(int SSP, FILE *out, float X[], float Xinit[], int hap,

int l2ap, int tstap, int Nstap, int tap, int Wap, struct stringer S,
struct ring R, struct material M, struct load L, struct cylinder C,
float G[], float *OBJ, long int *METHOD, long int *IPRINT,
long int *NDV, long int *NCON, float XL[], float XU[], int mflag,
char LEB);

/***/
/************************* file EVAL.C ****************************/
/***/

/* EVAL is the function that controls the analysis
called from: CALLeval
calls : stringer, skinbuck, getScrip, colstress, GCBcalc, stresscheck,

and finalout

22

returns : G array values
Anew - cylinder area with buckled skin,
Faxial, Faxialp - axial stress from F and Pa only, w/ sf and sfp
gamF - general cylinder buckling knockdown factor for axial loads
gamM - general cylinder buckling knockdown factor for bending
GCB - flag for identifying the shell buckling failure mode
i - index
Io - cylinder total moment of inertia
mdrv - the critical wavelength value for I-coupled buckling
mgcb, ngcb - half axial and hoop waves for Nx
N - knockdown adjusted applied line load
Nx - critical general cylinder buckling line loads
ncr - hoop waves for Pcr
Pcr - critical general cylinder buckling pressure
rasl, risl - radius average skin line, inner skin line
St - applied tension stress
Scol, Scrstcol - applied and critical stringer/column stress
Scrip1/2, - crippling and local buckling critical stresses
ScripS - weighted average of inelastic crippling stress
Scrpl, Sskbd - skin stresses: crit. skin buckling, skin buck. driver
Ssk - maximum stress in the skin
tau, taucr, tauskbd, tau0 - shear stresses: maximum, skin buckling

critical, skin buckling driver, minimum
theta, dtheta - angle and angle between stringers
Yst, Ysk - stringer and skin y distances from cylinder center

**/
void eval(struct stringer S, struct ring R, struct material M, struct load L,

struct cylinder C, float G[], float *OBJ, FILE *out, int SSP,
int mflag, char LEB);

/***/
/************************* file CIO.C ************************/
/***/

/* finalout prints the last set of output data
called from: eval
calls :
returns :
**/
void finalout(struct ring R, struct stringer S, struct material M,

struct load L, struct cylinder C, float G[], float gamF, float gamM,
char GCB, int mgcb, float N, int ncr, int ngcb, float Nx, float obj,
FILE *out, float Pcrush, float Scol, float Scrip1, float Scrip2,
float Scrstcol, char LEB, int mdrv, float Io, float Faxial);

/* cinput, finput, iinput read a character, a float and an integer,
respectively from the input file then skips to the next line

called from: readinput
calls :
returns : a character, float, or integer
**/
char cinput(FILE *infile);
float finput(FILE *infile);
int iinput(FILE *infile);

/* pinput, repeats the information from the input file so that input and
output are always kept together

called from: main
calls :
returns :
**/
void pinput(struct stringer S, struct ring R, struct material M,

struct load L, struct cylinder C, long int IPRINT, long int METHOD,
FILE *out, int SSP, float X[], float XL[], float XU[], int mflag,

23

char LEB);

/* readinput, reads the information in the input file
called from: main
calls :
returns : all input information
**/
void readinput(char Title[], FILE *in, long int *IPRINT, long int *METHOD,

int *SSP, struct material *M, struct cylinder *C, struct stringer *S,
struct ring *R, struct load *L, float XL[], float X[], float XU[],
float Tol[], int *mflag, char *LEB);

/***/
/************************* file CORSSTOL.C ************************/
/***/

/* CALLevalCT arranges the CORSSTOL information and calls the analysis
called from: EVALTOL
calls : eval
returns : array of constraints for DOT
**/
void CALLevalCT(struct stringer S, struct ring R, struct material M,

struct load L, struct cylinder C, float G[], float XW[],
float *OBJ, FILE *out, int SSP, int mflag, char LEB);

/* corsstol controls the optimization loop of the sensitivity study
called from: main
calls : CTPinput, EVALTOL, DOT, TOLOUT, and CTfinalout
returns :

INFO,IPRM,IWK,j,MINMAX,NRIWK,NRWK,RPRM,WK,OBJ - as in ctopt
Gslope - d(constraint)/d(design variable)
GW - array of worst condition constraints, used in DOT
Wslope - d(weight)/d(design variable)
Xnorm - array of design variable normalizing values
AddTol - additonal tolerances gained by constraints not equal to 0
delWt - delta weights from each design variables tolerance
DVmin, DVmax - new design variable tolerance limits, based on AddTol
OPTWT - the Minimum Material Condition weight
NSTmin - the minimum number of stringers within the tolerance;

**/
void corsstol(struct stringer S, struct ring R, struct material M,

struct load L, struct cylinder C, int hap, long int IPRINT,
int l2ap, long int METHOD, long int NCON, long int NDV, int Nrng,
int Nstap, FILE *out, int SSP, int tap, float Tol[], int tstap,
int Wap, float X[], float XL[], float XU[],int mflag, char LEB);

/* CTPinput prints the tolerances to the output file
called from: corsstol
calls :
returns :
**/
void CTPinput(char stype, float Tol[], FILE *out);

/* CTfinalout prints the tolerancing information
called from: corsstol
calls :
returns :

i,j - indices
ERR - used to mark driving constraints
string1,string2 - used for outputing diffent strings
NSTmax - maximum number of stringers within the tolerance

24

**/
void CTfinalout(float OPTWT, float MAXWT,

float WSLOPE[], float DELWT[], float Gslope[][6],
float GW[], float ADDTOL[][6], float DVMIN[],
float DVMAX[], char stype, FILE *out,
float Tol[], float R, float h,
float l2, float tst, float b,
float t, float W, float Nst, float NSTmin,
char LEB, long int NCON);

/* EVALTOL controls the sensitivity analysis
called from: corsstol
calls : CALLeval, WEIGHT
returns : weight, GSLOPE, and GW

f - worst case control flag
G - working constraints
Gsign - array indicating positive or negative slope of GSLOPE
GWdone - completed GW calculating flags
INITG - reference set of constraint values
INITX - reference set of design varialbes
j,i,k - indices
OBJ - dummy weight variable
XW - worst case set of design variables for a given constraint

**/
float EVALTOL(struct stringer S, struct ring R, struct material M,

struct load L, struct cylinder C, float GSLOPE[][6], float GW[],
int hap, int l2ap, int Nstap, FILE *out, int tap, float Tol[],
int tstap, int Wap, float X[], float XNORM[], int SSP, int mflag,
char LEB, long int NCON);

/* TOLOUT performs the sensitivity calculations
called from: corsstol
calls : WEIGHT
returns : AddTol, delWt, additional max and min design variables,

the minimum material condition weight, and WSLOPE
i,j - indices
MAXWT - maximum material condition weight
NEWDVS, NEWDVL - minimum and maximum holding variables for additional

design variable range
Nmin - used to calculate sensitivities to stringer spacing
OBJH - comparison weight for calculating weight slopes
TW - array of worst tolerances
XW - working design variable array, Nst is replaced by b

**/
void TOLOUT(float ADDTOL[][6], float ALP, float AR, float DELWT[],

 float DVMAX[], float DVMIN[], float FWT, float L,
 float GSLOPE[][6], float GW[], float L1, float NRNG,
 float *OPTWT, float R, float RHO, char STYPE,
 float TOL[], float WSLOPE[], float X[], float ZR,
 int harpos, int l2arpos, int tstarpos, int Nstarpos,
 int tarpos, int Warpos, float NSTmin, long int NCON);

/* WEIGHT calculates the weight of the cylinder
called from: EVALTOL, TOLOUT,
calls :
returns : weight of the structure
 float ALPHA,HA,AS,RASL,RISL;

ALPHA - web angle in radians
HA - web slant length
AS - stringer cross sectional area
RASL - radius at the center of the skin
RISL - radius at the inner skin line

**/
float WEIGHT (float A, float C, float D, float EE, float FF,

25

 float FWT, float L, float L1, float NRNG, float P,
 float R, float RHO, float stype, float ALP, float AR,
 float ZR);

File CTMAIN.C

#include “../corss/corss.h”

void main(argc, argv)
int argc;
char *argv[];
{
 FILE *in,*out;
 long int NDV, NCON, IPRINT, METHOD;
 float X[12],XL[6],XU[6],G[5],OBJ;
 float Xinit[12],Tol[6];
 char Title[80],LEB;
 int i,SSP,hap,l2ap,tstap,Nstap,tap,Wap,mflag;
 struct material M;
 struct load L;
 struct stringer S;
 struct ring R;
 struct cylinder C;
 printf(“\nmain\n”);
 NDV = 6; NCON = 5;
 if ((in = fopen(argv[1],”rt”)) == NULL)
 {
 printf(“\ncan't open input file, First parameter must be input file”);
 comlineerr();
 }
 if (strcmp(argv[1],argv[2]) == 0)
 {
 printf(“\ninput filename is the same as output filename”);
 comlineerr();
 }
 if ((out = fopen(argv[2],”wt”)) == NULL)
 {
 printf(“\ncan't open output file, Second param. must be output file”);
 comlineerr();
 }
 fprintf(out,”CORSS - Cylinder Optimization of Rings, Skin and Stringe”);
 fprintf(out,”rs\n NASA/MSFC/ED52 - Structural Development Branch”);
 fprintf(out,”\n Jeff Finckenor, Sep. 1993, ver. 2.1”);
 fprintf(out,”\n Copyright (c) 1994 National Aeronautics and”);
 fprintf(out,”\n Space Administration. No copyright claimed in”);
 fprintf(out,”\n USA under Title 17, U.S. Code. All other rights”);
 fprintf(out,”\n reserved.\n”);
 printf(“CORSS - Cylinder Optimization of Rings, Skin and Stringe”);
 printf(“rs\n NASA/MSFC/ED52 - Structural Development Branch”);
 printf(“\n Jeff Finckenor, Sep. 1993, ver. 2.1”);
 printf(“\n Copyright (c) 1994 National Aeronautics and”);
 printf(“\n Space Administration. No copyright claimed in”);
 printf(“\n USA under Title 17, U.S. Code. All other rights”);
 printf(“\n reserved.\n\n”);
 readinput(Title,in,&IPRINT,&METHOD,&SSP,&M,&C,&S,&R,&L,XL,X,XU,Tol,&mflag,&LEB);
 fclose(in);
 fprintf(out,”\n%s”,Title);
 if (0 == R.N) { R.A = .001; R.I = .001; R.Z = .001; R.J = .001; }
 pinput(S,R,M,L,C,IPRINT,METHOD,out,SSP,X,XL,XU,mflag,LEB);
 if ((S.stype != 'H') && (S.stype != 'I'))
 {
 printf(“\n\n%c is not a valid stringer type\a\a\a”,S.stype);

26

 exit(4);
 }
 if (('H'==S.stype) && ('N'!=LEB)) NCON--;
 NDV = initDVs(XL,X,XU,&hap,&l2ap,&tstap,&Nstap,&tap,&Wap,Xinit,NDV);
 if (NDV != 0)

ctopt(SSP,out,X,Xinit,hap,l2ap,tstap,Nstap,tap,Wap,S,R,M,L,C,G,
&OBJ,&METHOD,&IPRINT,&NDV,&NCON,XL,XU,mflag,LEB);

 fprintf(out,”\n”);
 fputs(Title,out);
 if ((SSP == 1) || (SSP == 3)) SSP = 4; else SSP = 5;
 CALLeval(S,R,M,L,C,G,X,Xinit,&OBJ,out,SSP,hap,l2ap,Nstap,tap,

tstap,Wap,mflag,LEB);
 for (i=0; i<NCON; i++)
 if (G[i]>0)
 {
 fprintf(out,”\n\n** WARNING G[%d] (=%7.5f>0) IS NOT “,i,G[i]);
 fprintf(out,”SATISFIED, THIS IS NOT A VALID SOLUTION!”);
 }
 if ((Tol[0]!=0) || (Tol[1]!=0) || (Tol[2]!=0) || (Tol[3]!=0) ||

(Tol[4]!=0) || (Tol[5]!=0))
 {
 for (i=0; i<NDV; i++)
 { XL[i] *= Xinit[i]; XU[i] *= Xinit[i]; X[i] *= Xinit[i]; }
 corsstol(S,R,M,L,C,hap,IPRINT,l2ap,METHOD,NCON,NDV,R.N,Nstap,out,

SSP,tap,Tol,tstap,Wap,X,XL,XU,mflag,LEB);
/* corsstol must define IPRM, IWK, MINMAX, NRIWK, NRWK, RPRM, WK */

 }
 fclose(out);
 printf(“\a\a\a”);
} /*** end main */

File CT.C

#include “..\corss\corss.h”

void corsstol(struct stringer S, struct ring R, struct material M,
struct load L, struct cylinder C, int hap, long int IPRINT,
int l2ap, long int METHOD, long int NCON, long int NDV, int Nrng,
int Nstap, FILE *out, int SSP, int tap, float Tol[], int tstap,
int Wap, float X[], float XL[], float XU[],int mflag, char LEB)

{
 long int INFO,IPRM[20],IWK[110],j,MINMAX,NRIWK,NRWK;
 float RPRM[20],WK[450];
 float Gslope[5][6], GW[5], Wslope[6], Xnorm[12], AddTol[5][6], delWt[6],

DVmin[6], DVmax[6], OBJ, OPTWT, NSTmin;
 int i;
 SSP = 0;
 for (j=0; j<20; j++)
 {
 RPRM[j] = 0.0;
 IPRM[j] = 0;
 }
 NRWK = 450; /* make the dimension of IWK and WK the same */
 NRIWK = 110;
 MINMAX = -1;
 INFO = 0;
 CTPinput(S.stype,Tol,out);
 for (i=0; i<NDV; i++)
 {
 Xnorm[i] = X[i];
 XL[i] = XL[i]/Xnorm[i];
 XU[i] = XU[i]/Xnorm[i];
 X[i] = 1.;
 }
 for (i=NDV; i<12; i++) Xnorm[i]=1.;

27

 if (NDV==0)
 OBJ = EVALTOL(S,R,M,L,C,Gslope,GW,hap,l2ap,Nstap,out,tap,Tol,tstap,

Wap,X,Xnorm,SSP,mflag,LEB,NCON);
 else
 {
 INFO = 0;
 do
 {
 OBJ = EVALTOL(S,R,M,L,C,Gslope,GW,hap,l2ap,Nstap,out,tap,Tol,tstap,Wap,

X,Xnorm,SSP,mflag,LEB,NCON);
 DOT(&INFO,&METHOD,&IPRINT,&NDV,&NCON,X,XL,XU,&OBJ,&MINMAX,GW,RPRM,IPRM,

WK,&NRWK,IWK,&NRIWK);
 } while (INFO!=0);
 }
 printf(“\nToleranced Optimization Complete, Max Weight = %f”,OBJ);
 for (i=0; i<NDV; i++) X[i] *= Xnorm[i];
 NSTmin = 2*pi*C.r/(2*pi*C.r/X[Nstap]+Tol[3]);
 for (i=0; i<NCON; i++) GW[i] -= 1.E-5;
 TOLOUT(AddTol,S.alp,R.A,delWt,DVmax,DVmin,C.fwt,C.l,Gslope,GW,S.l1,

R.N,&OPTWT,C.r,M.rho,S.stype,Tol,Wslope,X,R.Z,hap,l2ap,tstap,
Nstap,tap,Wap,NSTmin,NCON);

 CTfinalout(OPTWT,OBJ,Wslope,delWt,Gslope,GW,AddTol,DVmin,DVmax,S.stype,
out,Tol,C.r,X[hap],X[l2ap],X[tstap],2*pi*C.r/X[Nstap],
X[tap],X[Wap],X[Nstap],NSTmin,LEB,NCON);

} /****************** end CORSSTOL ****************/

float WEIGHT (float A, float C, float D, float EE, float FF,
 float FWT, float L, float L1, float NRNG, float P,
 float R, float RHO, float stype, float ALP, float AR,
 float ZR)

{
 float ALPHA,HA,AS,RASL,RISL;
 ALPHA = (ALP*pi)/180.0;
 if ('H'==stype)
 {
 HA = (A-D-P)/(cos(ALPHA));
 AS = (2.0*(L1*D)) + (2.0*(HA*D)) + (C*P);
 }
 else
 {
 HA = (A-C-L1)/(cos(ALPHA));
 AS = (P*L1) + (D*HA) + (P*C);
 }
 RASL = R-(FF/2.0);
 RISL = R-FF;
 return (((pi*2.0*RASL*FF*L) + (AS*L*EE) + ((AR*NRNG*2.0*pi) *

(RISL+ZR)))*RHO + FWT);
} /************** end weight ********************/

float EVALTOL(struct stringer S, struct ring R, struct material M,
struct load L, struct cylinder C, float GSLOPE[][6], float GW[],
int hap, int l2ap, int Nstap, FILE *out, int tap, float Tol[],
int tstap, int Wap, float X[], float XNORM[], int SSP, int mflag,
char LEB, long int NCON)

{
 float INITG[5],G[5],INITX[6],XW[6],OBJ,Gsign[5];
 int j,i,k,f,GWdone[5];
 printf(“\nEVALTOL”);
 XW[0] = INITX[0] = X[hap]*XNORM[hap];
 XW[1] = INITX[1] = X[l2ap]*XNORM[l2ap];
 XW[2] = INITX[2] = X[tstap]*XNORM[tstap];
 XW[3] = INITX[3] = 2*pi*C.r/(X[Nstap]*XNORM[Nstap]);
 XW[4] = INITX[4] = X[tap]*XNORM[tap];

28

 XW[5] = INITX[5] = X[Wap]*XNORM[Wap];
 for (i=0; i<NCON; i++) Gsign[i]=0;
 CALLevalCT(S,R,M,L,C,INITG,INITX,&OBJ,out,SSP,mflag,LEB);
 printf(“ GSLOPE”);
 for (j=0; j<6; j++)
 {
 XW[j] *= 1.01;
 CALLevalCT(S,R,M,L,C,G,XW,&OBJ,out,SSP,mflag,LEB);
 for (i=0; i<NCON; i++)
 {
 GSLOPE[i][j] = (G[i]-INITG[i])/(XW[j]-INITX[j]);
 if (GSLOPE[i][j]>0) Gsign[i]+=pow(10,j);
 }
 XW[j] /= 1.01;
 }
 printf(“ GWorst”);
 for (k=0; k<NCON; k++) GWdone[k] = 0;
 for (i=0; i<NCON; i++)
 {
 f = 0;
 for (k=0; k<i; k++) if (Gsign[k]==Gsign[i]) f++;
 if (0==f)
 {
 for (j=0; j<6; j++)

if (GSLOPE[i][j]<=0) XW[j] = INITX[j];
else XW[j] = INITX[j]+Tol[j];

 CALLevalCT(S,R,M,L,C,G,XW,&OBJ,out,SSP,mflag,LEB);
 GW[i] = G[i] + 1.E-5;
 GWdone[i] = 1;
 for (k=i+1; k<NCON; k++)

if ((Gsign[k]==Gsign[i]) && (GWdone[k]==0))
{
 GW[k] = G[k]+.005;
 GWdone[k] = 1;
}

 } /** end if f==0 **/
 } /* end for i */
 return (WEIGHT(INITX[0]+Tol[0],INITX[1]+Tol[1],INITX[2]+Tol[2],

2*pi*C.r/INITX[3],INITX[4]+Tol[4],C.fwt,C.l,S.l1,R.N,
INITX[5]+Tol[5],C.r,M.rho,S.stype,S.alp,R.A,R.Z));

} /******************** end evaltol ***********************/

void CALLevalCT(struct stringer S, struct ring R, struct material M,
struct load L, struct cylinder C, float G[], float XW[],
float *OBJ, FILE *out, int SSP, int mflag, char LEB)

{
 S.h = XW[0];
 S.l2 = XW[1];
 S.N = 2*pi*C.r/XW[3];
 S.t = XW[2];
 C.t = XW[4];
 S.W = XW[5];
 eval(S,R,M,L,C,G,OBJ,out,SSP,mflag,LEB);
} /*** end CALLevalCT ******/

void TOLOUT(float ADDTOL[][6], float ALP, float AR, float DELWT[],
 float DVMAX[], float DVMIN[], float FWT, float L,
 float GSLOPE[][6], float GW[], float L1, float NRNG,
 float *OPTWT, float R, float RHO, char STYPE,
 float TOL[], float WSLOPE[], float X[], float ZR,
 int harpos, int l2arpos, int tstarpos, int Nstarpos,
 int tarpos, int Warpos, float NSTmin, long int NCON)

{

29

 float TW[6], OBJH, NEWDVS, NEWDVL, XW[6], MAXWT, Nmin;
 int i,j;
 printf(“\nTOLOUT”);
 XW[0] = X[harpos];
 XW[1] = X[l2arpos];
 XW[2] = X[tstarpos];
 XW[3] = 2*pi*R/X[Nstarpos];
 XW[4] = X[tarpos];
 XW[5] = X[Warpos];
 *OPTWT = WEIGHT(XW[0],XW[1],XW[2],NSTmin,XW[4],FWT,L,L1,NRNG,XW[5],

 R,RHO,STYPE,ALP,AR,ZR);
 printf(“ WSLOPE and DELWT”);
 printf(“\nWSLOPE about maximum (for comparison only)”);
 for (i=0; i<6; i++) TW[i] = TOL[i];
 MAXWT = WEIGHT(XW[0]+TOL[0],XW[1]+TOL[1],XW[2]+TOL[2],X[Nstarpos],

 XW[4]+TOL[4],FWT,L,L1,NRNG,XW[5]+TOL[5],R,RHO,STYPE,ALP,AR,ZR);
 for (i=0; i<6; i++)
 {
 if (3==i)
 {
 if (TOL[i]!=0)
 {

OBJH = WEIGHT(XW[0]+TOL[0],XW[1]+TOL[1],XW[2]+TOL[2],NSTmin,
 XW[4]+TOL[4],FWT,L,L1,NRNG,XW[5]+TOL[5],R,RHO,STYPE,ALP,AR,ZR);
DELWT[i] = MAXWT - OBJH;
WSLOPE[i] = DELWT[i]/(X[Nstarpos]-NSTmin);

 }
 else
 {

OBJH = WEIGHT(XW[0]+TOL[0],XW[1]+TOL[1],XW[2]+TOL[2],.99*X[Nstarpos],
 XW[4]+TOL[4],FWT,L,L1,NRNG,XW[5]+TOL[5],R,RHO,STYPE,ALP,AR,ZR);
DELWT[i] = MAXWT - OBJH;
WSLOPE[i] = DELWT[i]/(.01*X[Nstarpos]);

 }
 }
 else
 {
 if (TOL[i]==0) TW[i] = -.01*XW[i]; else TW[i] = 0;
 OBJH = WEIGHT(XW[0]+TW[0],XW[1]+TW[1],XW[2]+TW[2],X[Nstarpos],

 XW[4]+TW[4],FWT,L,L1,NRNG,XW[5]+TW[5],R,RHO,STYPE,ALP,AR,ZR);
 DELWT[i] = MAXWT - OBJH;
 if (TOL[i]==0) WSLOPE[i] = DELWT[i]/(.01*XW[i]);

else WSLOPE[i] = DELWT[i]/TOL[i];
 }
 if (TOL[i]==0) DELWT[i]=0;
 printf(“\nDV=i=%d, WTi=%8.2f, DELWTi=%8.2f, TOLi=%7.5f, WSLOPEi=%9.2f”,

i,OBJH,DELWT[i],TOL[i],WSLOPE[i]);
 TW[i] = TOL[i];
 } /* end for i */
 printf(“\nWSLOPE about optimum (used in calculations)”);
 for (i=0; i<6; i++) TW[i] = 0;
 for (i=0; i<6; i++)
 {
 if (i==3)
 {
 if (TOL[i]!=0)
 {

OBJH = WEIGHT(XW[0],XW[1],XW[2],X[Nstarpos],
 XW[4],FWT,L,L1,NRNG,XW[5],R,RHO,STYPE,ALP,AR,ZR);
TW[i] = X[Nstarpos]-NSTmin;

 }
 else
 {

OBJH = WEIGHT(XW[0],XW[1],XW[2],1.01*X[Nstarpos],
 XW[4],FWT,L,L1,NRNG,XW[5],R,RHO,STYPE,ALP,AR,ZR);
TW[i] = .01*X[Nstarpos];

 }

30

 }
 else
 {
 if (TOL[i]!=0) TW[i] = TOL[i]; else TW[i] = .01*XW[i];
 OBJH = WEIGHT(XW[0]+TW[0],XW[1]+TW[1],XW[2]+TW[2],NSTmin,

 XW[4]+TW[4],FWT,L,L1,NRNG,XW[5]+TW[5],R,RHO,STYPE,ALP,AR,ZR);
 }
 DELWT[i] = OBJH - *OPTWT;
 WSLOPE[i] = DELWT[i]/TW[i];
 if (TOL[i]==0) { DELWT[i]=0; TW[i]=0; }
 TW[3]=TOL[3];
 printf(“\nDV=i=%d, WTi=%8.2f, DELWTi=%8.2f, TOLi=%7.5f, WSLOPEi=%9.2f”,

i,OBJH,DELWT[i],TW[i], WSLOPE[i]);
 TW[i] = 0;
 } /* end for i */
 printf(“\nCalculate ADDTOL”);
 for (j=0; j<6; j++)
 {
 for (i=0; i<NCON; i++)
 {
 if (fabs(GSLOPE[i][j])<1e-5) ADDTOL[i][j] = -99;

else ADDTOL[i][j] = XW[j] - GW[i]/GSLOPE[i][j];
 if (GSLOPE[i][j]>0) ADDTOL[i][j] += TOL[j];
 } /* end for i */
 } /* end for j */
 printf(“ DVMIN and DVMAX”);
 for (j=0; j<6; j++)
 {
 NEWDVS = 0.0;
 NEWDVL = 9999.0;
 for (i=0; i<NCON; i++)
 {
 if ((ADDTOL[i][j]<XW[j]) && (ADDTOL[i][j]>NEWDVS))

NEWDVS = ADDTOL[i][j];
 if ((ADDTOL[i][j]>(XW[j]+TOL[j])) && (ADDTOL[i][j]<NEWDVL))

NEWDVL = ADDTOL[i][j];
 } /* end for i */
 DVMIN[j] = NEWDVS;
 DVMAX[j] = NEWDVL;
 } /* end for j */
} /************************* end tolout ********/

void CTPinput(char stype, float Tol[], FILE *out)
{
 fprintf(out,”\n\n\n---Tolerance Sensitivity Output for CORSS---”);
 fprintf(out,”\n\nDesign Variable Tolerances”);
 fprintf(out,”\n htol = %20.4f Stringer Height Tolerance”,Tol[0]);
 if ('H'==stype)
 {
 fprintf(out,”\n l2tol = %20.4f Top Flange Length Tolerance”,Tol[1]);
 fprintf(out,”\n tsttol = %20.4f Stringer Thickness Tolerance”,Tol[2]);
 }
 else
 {
 fprintf(out,”\n l2tol = %20.4f Top Flange Thickness Tolerance”,Tol[1]);
 fprintf(out,”\n tsttol = %20.4f Stringer Web Thickness Tolerance”,Tol[2]);
 }
 fprintf(out,”\n Nsttol = %20.4f Stringer Spacing Tolerance”,Tol[3]);
 fprintf(out,”\n ttol = %20.4f Skin Thickness Tolerance”,Tol[4]);
 if ('H'==stype)
 fprintf(out,”\n Wtol = %20.4f Top Flange Thickness Tolerance”,Tol[5]);
 else
 fprintf(out,”\n Wtol = %20.4f Top Flange Width Tolerance”,Tol[5]);
 fprintf(out,”\n\n\nNEW OPTIMUM ANALYSIS”);
} /******************* end CTpinput *******************/

31

void CTfinalout(float OPTWT, float MAXWT,
float WSLOPE[], float DELWT[], float Gslope[][6],
float GW[], float ADDTOL[][6], float DVMIN[],
float DVMAX[], char stype, FILE *out,
float Tol[], float R, float h,
float l2, float tst, float b,
float t, float W, float Nst, float NSTmin,
char LEB, long int NCON)

{
 int i,j;
 char ERR[5], string1[80], string2[80];
 float NSTmax;
 fprintf(out,”\n\n\nSENSITIVITY ANALYSIS RESULTS”);
 fprintf(out,”\n\n\t\t\tOptimum Maximum Delta”);
 fprintf(out,”\nCylinder Weight\t%15.2f %10.2f %10.2f”,OPTWT,MAXWT,MAXWT-OPTWT);
 fprintf(out,”\n\nDesign Variable Solutions”);
 fprintf(out,”\n DV Optimum OPT+TOL dWt/dDV dWt”);
 fprintf(out,”\n h = %10.5f %10.5f %10.4f %10.4f”,

h,h+Tol[0],WSLOPE[0],DELWT[0]);
 fprintf(out,”\n l2 = %10.5f %10.5f %10.4f %10.4f”,

l2,l2+Tol[1],WSLOPE[1],DELWT[1]);
 fprintf(out,”\n tst = %10.5f %10.5f %10.4f %10.4f”,

tst,tst+Tol[2],WSLOPE[2],DELWT[2]);
 fprintf(out,”\n (b = %10.5f %10.5f)”,b+Tol[3],b);
 fprintf(out,”\n Nst = %10.5f %10.5f %10.4f %10.4f”,

NSTmin,Nst,WSLOPE[3],DELWT[3]);
 fprintf(out,”\n t = %10.5f %10.5f %10.4f %10.4f”,

t,t+Tol[4],WSLOPE[4],DELWT[4]);
 fprintf(out,”\n W = %10.5f %10.5f %10.4f %10.4f”,

W,W+Tol[5],WSLOPE[5],DELWT[5]);
 fprintf(out,”\n\nNumber of Stringers, Nst = 2*pi*r/b, b = stringer spacing”);
 fprintf(out,”\n\nSmall changes in b change the theoretical number of “);
 fprintf(out,”stringers used in\nthe analysis. As stringer spacing “);
 fprintf(out,”increases, the number of stringers\ndecreases. The design “);
 fprintf(out,”will have an integer number of stringers, but\nthe effect “);
 fprintf(out,”of the spacing tolerance is shown here.”);
 fprintf(out,” Any differences\nbetween the sum of the dWt values “);
 fprintf(out,”and deltaWt are due to the weight\nfunction not being linear.”);
 fprintf(out,” All calculations are based on taking\ndifferences about “);
 fprintf(out,”the optimum.”);
 fprintf(out,”\n\nGSLOPE ARRAY”);
 fprintf(out,”\nDV dSkB/dDV dShB/dDV dStr/dDV “);
 if (stype=='H')
 if (LEB=='Y') fprintf(out,”dCrp/dDV”);
 else fprintf(out,”dLBF/dDV dLBW/dDV”);
 else
 if (LEB=='Y') fprintf(out,”dCrp/dDV dICB/dDV”);
 else fprintf(out,”dLBF/dDV dICB/dDV”);
 fprintf(out,”\nh “);
 for (i=0; i<NCON; i++) fprintf(out,” %9.4f”,Gslope[i][0]);
 fprintf(out,”\nl2 “);
 for (i=0; i<NCON; i++) fprintf(out,” %9.4f”,Gslope[i][1]);
 fprintf(out,”\ntst”);
 for (i=0; i<NCON; i++) fprintf(out,” %9.4f”,Gslope[i][2]);
 fprintf(out,”\nb “);
 for (i=0; i<NCON; i++) fprintf(out,” %9.4f”,Gslope[i][3]);
 fprintf(out,”\nt “);
 for (i=0; i<NCON; i++) fprintf(out,” %9.4f”,Gslope[i][4]);
 fprintf(out,”\nW “);
 for (i=0; i<NCON; i++) fprintf(out,” %9.4f”,Gslope[i][5]);
 /* determine critical constraints */
 for (i=0; i<NCON; i++) if (GW[i]>-.05) ERR[i]='*'; else ERR[i]=' ';
 fprintf(out,”\n\nG[i]”);
 for (i=0; i<NCON; i++) fprintf(out,” %8.5f%c”,GW[i],ERR[i]);

32

 fprintf(out,”\n\n* Denotes the Driving Constraints, which must be negative to “);
 fprintf(out,”be satisfied\nGSLOPE = [G(1.01*DV)-G(DV)]/(1.01*DV-DV)”);
 fprintf(out,”\nnegative values of d()/dDV indicate a safer design for an “);
 fprintf(out,”increase in DV\nDV = Design Variable\t\tG[i] = Constraint Value”);
 fprintf(out,”\nSkB = Skin Buckling\t\tShB = Shell Buckling”);
 fprintf(out,”\nStr = Stress”);
 if (stype=='H')
 if (LEB=='Y') fprintf(out,”\t\t\tCrp = Stringer Crippling”);
 else fprintf(out,”\nLBF = Local Buckling, Flange\tLBW = Local Buckling, Web”);
 else
 if (LEB=='Y') fprintf(out,

 “\t\t\tCrp = Stringer Crippling\nICB = 'I'-stringer Coupled Buckling”);
 else fprintf(out,

 “\nLBF = Local Buckling, Flannge\tICB = 'I'-stringer Coupled Buckling”);
 fprintf(out,”\n\nADDITIONAL TOLERANCE ARRAY”);
 fprintf(out,”\nDV SkB ShB Str “);
 if (stype=='H')
 if (LEB=='Y') fprintf(out,”Crp “);
 else fprintf(out,”LBF LBW”);
 else
 if (LEB=='Y') fprintf(out,”Crp ICB”);
 else fprintf(out,”LBF ICB”);
 fprintf(out,”\nh “);
 for (i=0; i<NCON; i++) fprintf(out,” %9.4f”,ADDTOL[i][0]);
 fprintf(out,”\nl2 “);
 for (i=0; i<NCON; i++) fprintf(out,” %9.4f”,ADDTOL[i][1]);
 fprintf(out,”\ntst”);
 for (i=0; i<NCON; i++) fprintf(out,” %9.4f”,ADDTOL[i][2]);
 fprintf(out,”\nb “);
 for (i=0; i<NCON; i++) fprintf(out,” %9.4f”,ADDTOL[i][3]);
 fprintf(out,”\nt “);
 for (i=0; i<NCON; i++) fprintf(out,” %9.4f”,ADDTOL[i][4]);
 fprintf(out,”\nW “);
 for (i=0; i<NCON; i++) fprintf(out,” %9.4f”,ADDTOL[i][5]);
 fprintf(out,”\n\nThe ADDTOL array contains the values of the design “);
 fprintf(out,”variables\nat which the constraint is equal to 0,”);
 fprintf(out,” assuming linear relationships.”);
 fprintf(out,”\nADDTOL = DV - G(DV)/GSLOPE”);
 fprintf(out,”\nNegative values should be disregarded, since they “);
 fprintf(out,”indicate the design\nvariable can be brought past zero “);
 fprintf(out,”without violating that particular\nconstraint.”);
 fprintf(out,”\n\n\nNEW RANGES for the Design Variables”);
 fprintf(out,” (from the Additonal Tolerance array)”);
 fprintf(out,”\n\n Below Optimum ---- Above “);
 fprintf(out,”Maximum ----\n Lower Weight Added Upper “);
 fprintf(out,” Weight Added New Tol.\nDV Limit Savings “);
 fprintf(out,” Toler. Limit Penalty Toler. Band”);
 sprintf(string2,” No constraint limits the upper bound”);
 fprintf(out,”\nh %9.5f %9.4f %9.5f “,

DVMIN[0],(h-DVMIN[0])*WSLOPE[0],h-DVMIN[0]);
 if (DVMAX[0]==9999) fprintf(out,”%s”,string2);
 else fprintf(out,”%10.5f %10.4G %10.5f %10.5f”,DVMAX[0],

 (DVMAX[0]-Tol[0]-h)*WSLOPE[0],DVMAX[0]-Tol[0]-h,DVMAX[0]-DVMIN[0]);
 fprintf(out,”\nl2 %9.5f %9.4f %9.5f “,

DVMIN[1],(l2-DVMIN[1])*WSLOPE[1],l2-DVMIN[1]);
 if (DVMAX[1]==9999) fprintf(out,”%s”,string2);
 else fprintf(out,”%10.5f %10.4G %10.5f %10.5f”,DVMAX[1],

(DVMAX[1]-Tol[1]-l2)*WSLOPE[1],DVMAX[1]-Tol[1]-l2,DVMAX[1]-DVMIN[1]);
 fprintf(out,”\ntst %9.5f %9.4f %9.5f “,

 DVMIN[2],(tst-DVMIN[2])*WSLOPE[2],tst-DVMIN[2]);
 if (DVMAX[2]==9999) fprintf(out,”%s”,string2);
 else fprintf(out,”%10.5f %10.4G %10.5f %10.5f”,DVMAX[2],
 (DVMAX[2]-Tol[2]-tst)*WSLOPE[2],DVMAX[2]-Tol[2]-tst,DVMAX[2]-DVMIN[2]);
 if (DVMIN[3]<1e-4) NSTmax = 9999; else NSTmax = 2*pi*R/DVMIN[3];
 fprintf(out,”\nNst %9.5f %9.4f “,

 2*pi*R/DVMAX[3],(NSTmin-2*pi*R/DVMAX[3])*WSLOPE[3]);
 if (NSTmax==9999) fprintf(out,”%s”,string2);

33

 else fprintf(out,” %10.5f %10.4G”,NSTmax,(NSTmax-Nst)*WSLOPE[3]);
 if (DVMIN[3]==0) fprintf(out,”\n(b No limit on the lower bound”);
 else
 fprintf(out,

 “\n(b %9.5f %9.5f “,DVMIN[3], b-DVMIN[3]);
 fprintf(out,” %10.5f %10.5f %10.5f)”,

DVMAX[3], DVMAX[3]-Tol[3]-b,DVMAX[3]-DVMIN[3]);
 fprintf(out,”\nt %9.5f %9.4f %9.5f “,
 DVMIN[4],(t-DVMIN[4])*WSLOPE[4],t-DVMIN[4]);
 if (DVMAX[4]==9999) fprintf(out,”%s”,string2);
 else fprintf(out,”%10.5f %10.4G %10.5f %10.5f”,DVMAX[4],

(DVMAX[4]-Tol[4]-t)*WSLOPE[4],DVMAX[4]-Tol[4]-t,DVMAX[4]-DVMIN[4]);
 fprintf(out,”\nW %9.5f %9.4f %9.5f “,
 DVMIN[5],(W-DVMIN[5])*WSLOPE[5],W-DVMIN[5]);
 if (DVMAX[5]==9999) fprintf(out,”%s”,string2);
 else fprintf(out,”%10.5f %10.4G %10.5f %10.5f”,DVMAX[5],

(DVMAX[5]-Tol[5]-W)*WSLOPE[5],DVMAX[5]-Tol[5]-W,DVMAX[5]-DVMIN[5]);
 fprintf(out,”\n\nThe only penalty for increasing design variables with”);
 fprintf(out,” no upper limit is an\nincrease in weight. Note that an “);
 fprintf(out,”unsatisfied constraint (G[i]>0) will\ncause unrealistic “);
 fprintf(out,”results. For a feasible solution, no constraints will be”);
 fprintf(out,”\nviolated as long as the DVs are held within the limits “);
 fprintf(out,”specified in this\nchart when”);
 fprintf(out,” ASSUMING LINEAR RELATIONSHIPS.”);
} /*************** end CTfinalout ******************/

